Geometric Deformation on Objects: Unsupervised Image Manipulation via Conjugation

Changqing Fu

CEREMADE Winter School, Normandy

March 2, 2022

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Practical Problem

- Problem Setting: "Image-to-Image Translation" (Pix2pix, 2017)
- Solution: Image Manipulation = Sparse Reconstruction + Multi-Scale Post-Processing

Pros: Transferability and training data efficiency.

Practical Problem

- Problem Setting: "Image-to-Image Translation" (Pix2pix, 2017)
- Solution: Image Manipulation = Sparse Reconstruction + Multi-Scale Post-Processing
- Pros: Transferability and training data efficiency.

Practical Problem

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Problem Setting: "Image-to-Image Translation" (Pix2pix, 2017)
- Solution: Image Manipulation = Sparse Reconstruction + Multi-Scale Post-Processing
- Pros: Transferability and training data efficiency.

Math Formulation

- Conjugation $A = \varphi^{-1} \circ B \circ \varphi$, φ is a fixed Edge Detector
- Well-definedness: Is φ an *invertible* diffeomorphism?
- Sparsity of \mathcal{N}
- ▶ $\varphi^{-1} : \mathcal{N} \longrightarrow \mathcal{M}, \ \varphi^{-1}(y) := \{x \in \mathcal{M} | \varphi(x) = y\}, \forall y \in \mathcal{M} \text{ not unique!}$

Math Formulation

$$\begin{array}{ccc} \mathcal{M} & \stackrel{A}{\longrightarrow} & \mathcal{M} & (\Omega, \mathcal{F}, \{\mathcal{D}_{ydata}, \mathcal{D}_{G}\}) \\ \varphi & & \uparrow^{\varphi^{-1}} & (x, y) \sim \mathcal{D}_{data}, G(x) | x \sim \mathcal{D}_{G}, x \sim \pi(\cdot) = \mathcal{D}_{xdata} \\ \mathcal{N} & \stackrel{B}{\longrightarrow} & \mathcal{N} \end{array}$$

• Conjugation $A = \varphi^{-1} \circ B \circ \varphi$, φ is a fixed Edge Detector

- Well-definedness: Is φ an *invertible* diffeomorphism?
- ► Sparsity of *N*

▶
$$\varphi^{-1} : \mathcal{N} \longrightarrow \mathcal{M}, \ \varphi^{-1}(y) := \{x \in \mathcal{M} | \varphi(x) = y\}, \forall y \in \mathcal{M} \text{ not unique!}$$

Surrogate solution: GAN, a Data-driven approach.

$$G:=\widehat{\varphi^{-1}}:\mathcal{N}\longrightarrow\mathcal{M}$$

s.t. $G = \operatorname{argmin}_{G} - \int_{\Omega} \log \underbrace{L_{D}(G(x))}_{G(x) \text{ is real}} d\pi(x) + \lambda \mathbb{E}_{(x,y) \sim \mathcal{D}_{data}} \|G(x) - y\|_{L^{1}}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Blueprint

Lv	Field	Particle	Motion
I	Image Canvas Ω	Pixel (x_1, x_2)	Active Cont. $\gamma \in L^2([0,1];\Omega)$
П	Image Sp $L^2(\Omega,\mathbb{R}^3)$	Image <i>u</i>	$u(t,x) \in L^{2}([0,1]; L^{2}(\Omega, \mathbb{R}^{3}))$
П	Conv. Neural Net	Inner Features	$u_{t_i}(x) \in L^2(\Omega, \mathbb{R}^{d(t_i)})$
Ш	Parameter Space Θ	Linear filters θ	Deep Learning θ_t
IV	Dual Param Sp ${\mathcal W}$	GAN Discrim <i>w</i>	Deep Metric Learn $L_{D_{w_t}}(\cdot)$
V	Evaluation Measures	$Metric u\mapsto \mathcal{D}(u)$	e.g. Pre-training FID

Table: Hierarchy of Dynamics

Figure: Homogeneous Filter on Patches

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Dynamics of Points, Lines, Images

Motion of points on images / Active Contor (Peyré, Cohen et al. 2011 MAL) γ ∈ C([0, 1]; ℝ²)

$$\Phi(\gamma) = -\int_0^1 U(\gamma) \|\dot{\gamma}\| \mathrm{d}t + \lambda \int_0^1 \|\dot{\gamma}\| + \mu \|\ddot{\gamma}\| \mathrm{d}t$$

Take $\mu = 0$, $W = U + \lambda$, γ is solved with the zero *level set* of φ 's asymptotic limit

$$\frac{\mathrm{d}}{\mathrm{d}t}\varphi_t = \|\nabla\varphi_t\|\mathrm{div}\left(W\frac{\nabla\varphi_t}{\|\nabla\varphi_t\|}\right)$$

momentum $T_{\Phi} = \frac{\gamma'(s)}{\|\gamma'(s)\|} \equiv 1$ (Noether) Image morphing (Trouvé et al. 2005) $u \in L^2([0,1]; L^2(\Omega, \mathbb{R}^3))$

$$\Phi(u) = \inf_{z=\dot{u}+\nabla u \cdot v} \int_0^1 \int_{\Omega} L^m[v,v] + \frac{1}{\delta} z^2 \mathrm{d}x \mathrm{d}t$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Dynamics of Network Layers

Sparse Reconstruction

Multi-Scale Reconstruction

Figure: U-net (Olaf et al. 2015)

$$\begin{aligned} x_{n+1} &= Encoder_n(x_n) \\ y_N &= Encoder_n(x_N) \\ y_{n-1} &= Decoder_n([x_n, y_n]) \end{aligned}$$

Back-propagation

Figure: ResNet sturcture (Shaham et al. 2019)

$$x_{n-1} = x_n^{\uparrow} + Decoder_n(x_n + z_{n-1})$$

Learn-by-scale: Input/Output at arbitrary scale

Neural Image Perception

Dynamics of Scale Space

Refinement:
Upsampling:
$$\begin{cases} x_n = \widetilde{x_{n-1}} + G_n(\widetilde{x_{n-1}} + z_n), & n = 0, \dots, N \\ \widetilde{x_n} = \pi(x_n) \\ x_0 = G_0(z_0) \end{cases}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Dynamics of GAN Parameters I

Fix discriminator D: a (learned) metric of the image being "fake".

$$\Phi_D(G) = \mathbb{E}_{y \sim \mathcal{D}_{ydata}}[\log D(y)] + \mathbb{E}_{x \sim \pi}[\log(1 - D(G(x)))]$$

Dynamics (Training / Optimization / Fixed-point Method)
 y ~ D_{ydata}, x ~ N(0,1), G ≡ f(y|x) ("Sampling via Inverse transform F⁻¹" / Importance Sampling / Change of variable / Bayesian Prior / Radon-Nikodym...)

$$D^*(y) = \frac{p_{ydata}(y)}{p_{ydata}(y) + p_G(y)}$$

(Picture from Goodfellow 2014)

Dynamics of GAN Parameters I

Fix discriminator D: a (learned) metric of the image being "fake".

$$\Phi_D(G) = \mathbb{E}_{y \sim \mathcal{D}_{ydata}}[\log D^2(y)] + \mathbb{E}_{x \sim \pi}[\log (1 - D(G(x)))^2]$$

Dynamics (Training / Optimization / Fixed-point Method)
 y ~ D_{ydata}, x ~ N(0,1), G ≡ f(y|x) ("Sampling via Inverse transform F⁻¹" / Importance Sampling / Change of variable / Bayesian Prior / Radon-Nikodym...)

Variants:

- If $x \sim \mathcal{D}_{xdata}$, *G* is called a "Conditional GAN".
- $G = Decoder \circ Encoder$, z = Encoder(x), y = Decoder(z), $z|x \sim \mathcal{N}(0, 1)$ "Variational Auto-encoder (VAE)".

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Dynamics of GAN Parameters II

Min-max game equilibrium / Saddle-point / Alternating Direction

$$\min_{G} \max_{D} \Phi_{D}(G) = \mathbb{E}_{y}[D(y)] - \mathbb{E}_{x}[D(G(x))]$$

$$F_{h}(G,D) = (G,D) - hv(G,D), \text{ where } v(G,D) = \begin{pmatrix} \nabla_{G}\Phi \\ -\nabla_{D}\Phi \end{pmatrix}$$
$$\begin{pmatrix} \dot{G} \\ \dot{D} \end{pmatrix} = \begin{pmatrix} -\nabla_{G}\Phi \\ \nabla_{D}\Phi \end{pmatrix}$$

Structure: Π_{layers} (Activation_{element-wise} \circ Linear_{centered}), w_i are wavelet filters

$$NN(x) = \rho_L(w_L \cdots \rho_1(w_1 x))$$

Gradient Penalty: 1-Lipshitz

$$\lambda \mathbb{E}_{x \sim \mu_{\theta}} (\|\nabla_{x} f_{w}(x)\|_{2} - 1)^{2}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Evaluation of GAN

Measure		Measure	Description	
Ē		A T NO NO 1 data and	 Log likelihood of explaining realworld held out/test data using a density estimated from the generated data 	
	1.	 Average Log-likelihood [18, 22] 	(e.g. using KDE or Parzen window estimation), $L = \frac{1}{2} \sum_{i} \log P_{model}(\mathbf{x}_i)$	
		2. Coverage Metric [33]	 The probability mass of the true data "covered" by the model distribution 	
	2.		$C := P_{data}(dP_{model} > t)$ with t such that $P_{model}(dP_{model} > t) = 0.95$	
	3.	Inception Score (IS) [3]	 KLD between conditional and marginal label distributions over generated data. exp (E_x [KL (p (y x) p (y))]) 	
	4.	Modified Inception Score (m-IS) [34]	 Encourages diversity within images sampled from a particular category. exp(E_{xi} [E_{xi} [KL(P(y x_i) P(y x_j))]) 	
Quantitative	δ.	Mode Score (MS) [35]	 Similar to IS but also takes into account the prior distribution of the labels over real data. 	
			$\exp \left(\mathbb{E}_{\mathbf{x}} \left[\mathbb{KL} \left(p(y \mid \mathbf{x}) \mid p(y^{train}) \right) \right] - \mathbb{KL} \left(p(y) \mid p(y^{train}) \right) \right)$	
		AM Score [36]	 Takes into account the KLD between distributions of training labels vs. predicted labels, 	
	0.		as well as the entropy of predictions. $\mathbb{KL}(p(y^{train}) p(y)) + \mathbb{E}_{\mathbf{x}}[H(y \mathbf{x})]$	
	~	Fréchet Inception Distance (FID) [37]	 Wasserstein-2 distance between multi-variate Gaussians fitted to data embedded into a feature space 	
			$FID(r, g) = \mu_r - \mu_g _2^2 + Tr(\Sigma_r + \Sigma_g - 2(\Sigma_r \Sigma_g)^{\frac{1}{2}})$	
	8. [35	Maximum Mean Discrepancy (MMD)	 Measures the dissimilarity between two probability distributions P_r and P₀ using samples drawn independently 	
			from each distribution. $M_k(P_r, P_g) = \mathbb{E}_{\mathbf{x}, \mathbf{x}' \sim P_r}[k(\mathbf{x}, \mathbf{x}')] - 2\mathbb{E}_{\mathbf{x} \sim P_r, \mathbf{y} \sim P_g}[k(\mathbf{x}, \mathbf{y})] + \mathbb{E}_{\mathbf{y}, \mathbf{y}' \sim P_g}[k(\mathbf{y}, \mathbf{y}')]$	
	-	and and the design front	 The critic (e.g. an NN) is trained to produce high values at real samples and low values at generated samples 	
	9.	The wasserstein Critic [39]	$\hat{W}(\mathbf{x}_{test}, \mathbf{x}_{0}) = \frac{1}{N} \sum_{i=1}^{N} \hat{f}(\mathbf{x}_{test}[i]) - \frac{1}{N} \sum_{i=1}^{N} \hat{f}(\mathbf{x}_{0}[i])$	
	10	 Birthday Paradox Test [27] 	 Measures the support size of a discrete (continuous) distribution by counting the duplicates (near duplicates) 	
	1	 Classifier Two Sample Test (C2ST) [40] 	 Answers whether two samples are drawn from the same distribution (e.e. by training a binary classifier) 	
		12. Classification Performance [1, 15]	 An indirect technique for evaluating the quality of unsupervised representations 	
	15		(e.g. feature extraction; FCN score). See also the GAN Quality Index (GQI) [41].	
	12	3. Boundary Distortion 42	 Measures diversity of generated samples and covariate shift using classification methods. 	
	1	4. Number of Statistically-Different Bins	 Given two sets of samples from the same distribution, the number of samples that 	
	- (2	NDB) [43]	fall into a given bin should be the same up to sampling noise	
	12	5. Image Retrieval Performance [44]	 Measures the distributions of distances to the nearest neighbors of some query images (i.e. diversity) 	
	16	5. Generative Adversarial Metric (GAM)	 Compares two GANs by having them engaged in a battle against each other by swapping discriminators 	
	3	1]	or generators. $p(\mathbf{x} y = 1; M_1)/p(\mathbf{x} y = 1; M_2) = (p(y = 1 \mathbf{x}; D_1)p(\mathbf{x}; G_2))/(p(y = 1 \mathbf{x}; D_2)p(\mathbf{x}; G_1))$	
	13	7. Tournament Win Rate and Skill	 Implements a tournament in which a player is either a discriminator that attempts to distinguish between 	
	R	ating [45]	real and fake data or a generator that attempts to fool the discriminators into accepting fake data as real.	
	18.	Normalized Relative Discriminative	 Compares n GANs based on the idea that if the generated samples are closer to real ones, 	
	3	core (NRDS) [32]	more epochs would be needed to distinguish them from real samples.	
	15	 Adversarial Accuracy and Divergence [46] 	 Adversarial Accuracy. Computes the classification accuracies achieved by the two classification, one trained on and data and mathematication accuracies achieved with the manimum R (club) and R (club). 	
	- [4		on real data and another on generated data, on a labeled valuation set to approximate $r_2(y x)$ and $r_7(y x)$. Advantation Dimension: Commutian $K(P_1(u x), P_2(u x))$	
		20. Geometry Score [47]	 Common strongenetical respective sa(s g(g(s)) + r(g)s)// Common scenarized non-article from the underlying data manifold between real and generated data 	
	-	S. Gronnerry Score [41]	 Compares the reconstruction error (e.e., Lo norm) between a test image and its closest. 	
Qualitative	21	21. Reconstruction Error [48]	momental image here obtaining for $\langle ig \rangle = \mu (ind) (constrained in the constraint of the constraint $	
	~	2 Image Ouelity Measures [40, 50, 51]	percenter image by openinging to a constant image up to the image of t	
		a. mage quarry measures [10, 00, 01]	 Evaluates how similar boolsool statistics of americal images such as const, to of natural access 	
	2	 Low-level Image Statistics [52, 53] 	 Dramas of mean nonzer on extrume distribution of random filter manyones contrast distribution etc. 	
	2	Precision Recall and E. more [22]	 These measures are used to constitute the derive of coarfitting in GANs, often over toy datasets 	
	-			
		Nearest Neighbors	 To detect overhitting, generated samples are shown next to their nearest neighbors in the training set 	
	2.1	Rapid Scene Categorization [18]	 In these experiments, participants are associ to distinguish generated samples from real images 	
		Performent Indoment ISA SS 56 571	in a story presentation time (i.y. too may, i.e. test v. Haddin of their summand impacts (i.e. main triples).	
	3.	r reterence suugment [54, 55, 56, 54]	 r a tropanse are associate to raise moves in terms of the additive of their generated images (e.g. pairs, triples) Ouse datasets with known modes (e.g. a CMM or a basis dataset) modes are computed as by measuring 	
	44	 Mode Drop and Collapse [58, 59] 	 Over datasets with known modes (c.g. a Garay of a sabeled dataset), modes are computed as by measuring the distances of semerated data to mode conters. 	
			 Beaming applications of guarantee in the internal representation and dynamics of models (s.a. mass continuity). 	
	5.	Network Internals [1, 60, 61, 62, 63, 64]	 regime copiering international processing in a metrial representation and dynamics of models (cyc) space continuity) as well as visualizing harmad features; 	

Figure:
$$IS = \exp(\mathbb{E}_{x \sim \mu_{\theta}} KL(p(y|x) || p(y)))$$

 $FID = ||\mu - \mu_{r}||_{2}^{2} + \operatorname{tr}(\Sigma + \Sigma_{r} - 2(\Sigma^{1/2} \Sigma_{r} \Sigma^{1/2})^{1/2})$
 $MMD = ||\frac{1}{n} \sum_{i=1}^{n} \varphi(x_{i}) - \frac{1}{m} \sum_{i=1}^{m} \varphi(y_{i})||_{\mathcal{H}}^{2} = \frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} k(x_{i}, x_{j}) + \frac{1}{m^{2}} \sum_{i=1}^{m} \sum_{j=1}^{m} k(y_{i}, y_{j}) - \frac{2}{nm} \sum_{i=1}^{n} \sum_{j=1}^{m} k(x_{i}, y_{j}) = \sum_{i=1}^{n} \sum_{j=1}^{m} k(x_{i}, y_{j}) = \sum_{i=1}^{n} \sum_{j=1}^{n} k(x_{i}, y_{i}) = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} k(x_{i}, y_{i}) = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} k(x_{i}, y_{i}) = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} k(x_{i}, y_{i}) = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} k(x_{i}, y_{i}) = \sum_{i=1}^{n} \sum_{j=1}^{n} k(x_{i}, y_{i}) = \sum_{i=1}^{n} \sum_{j=1}^{n} k(x_{i}, y_{i}) = \sum_{i=1}^{n} \sum_{j=1}^{n} k($

Properties of CNN

- Center preserving $\int_{\Omega} u dx \equiv const.$: StyleGAN (Center~Image Force)
- ► Norm preserving $\int_{\Omega} u^2 dx \equiv const.$: Batch / Instance / Layer / Group Normalization (Covariance~Style)
- Invertibility: Normalizing Flow
- Equivariance, conserved quantity, frequency separation g ∘ ρ = ρ ∘ g: StyleGAN3 (Alias-free)
- Non-homogeneity of local filters: Transformers
- Integrability across scales: This work (Space dimension is time dependent)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Applications

(日)

э

- Medical Image Synthesis
- Active Learning
- Privacy-Protective Learning
- Cross-Domain/Transfer Learning

Thank You

Q&A

*Funded in part by the French government under management of Agence Nationale de la Recherche as part of the "Investissements d'avenir" program, reference ANR-19-P3IA-0001 (PRAIRIE 3IA Institute).